Mostly adapted from Aladdin Persson’s work
1. Fully connected net
# ======Imports========= import torch import torch.nn.functional as F # Parameterless functions for GD, like (some) activation functions. Also contained in nn. from torch import optim # For optimizers like SGD, Adam, etc. from torch import nn # All neural network modules import torchvision.datasets as datasets # Standard datasets import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation # in our case, just transforms to tensor. from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc. from tqdm import tqdm # progress bar #======Create the NN====== class NN(nn.Module): # we are inheriting from nn.Module. #===initialization method def __init__(self, input_size, num_classes): # mnist images is is 28*28 = 784 super(NN, self).__init__() # super calls the initialization method of the parent class, which is nn.module self.fc1 = nn.Linear(input_size, 50) # 2nd layer is 50 neurons. self.fc2 = nn.Linear(50, num_classes) #===forward method def forward(self, x): # x = F.relu(self.fc1(x)) x = self.fc2(x) return x #=====Set device===== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #=====Hyperparameters====== input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 3 #=====Load Data======== # == MNISt contains 60,000 train images and 100,000 test images. train_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True #root says where it should save the dataset. ) #transform transforms from numpy array to tensor #download says if our system does not have the data, download it.. test_dataset = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) #shuffles between epochs. test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) #=====Initialize network=============== model = NN(input_size=input_size, num_classes=num_classes).to(device) #=========Loss and optimizer============= criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) #========Train Network========================= for epoch in range(num_epochs): # https://realpython.com/python-enumerate/ for batch_idx, (data, targets) in enumerate(tqdm(train_loader)): #tqdm is progress bar. Takes data from train_loader #enumerate tells us which batch index we are in # Get data to cuda if possible data = data.to(device=device) #data.shape is 64, 1, 32, 32 at this stage. print(data.shape) will show this. targets = targets.to(device=device) # Get to correct shape data = data.reshape(data.shape[0], -1) #data size comes as (64, 1, 28,28). flattens the (1, 28, 28) part into a single dimension. # Forward scores = model(data) loss = criterion(scores, targets) # Backward optimizer.zero_grad() #initialize the gradient backprop. loss.backward() # Gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): num_correct = 0 num_samples = 0 model.eval() #evaluation mode. Only dropout and batchorm care about this. # We don't need to keep track of gradients here so we wrap it in torch.no_grad() with torch.no_grad(): # Loop through the data for x, y in loader: # Move data to device x = x.to(device=device) y = y.to(device=device) # Get to correct shape x = x.reshape(x.shape[0], -1) # Forward pass scores = model(x) #scores are 64*10 _, predictions = scores.max(1) #we are not interested in val but in index. # Check how many we got correct num_correct += (predictions == y).sum() # Keep track of number of samples num_samples += predictions.size(0) # this is 64 model.train() # training mode. Only dropout and batchorm care about this. return num_correct / num_samples # Check accuracy on training & test to see how good our model print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}") print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
2. Convolutional Neural Net
import torch import torch.nn.functional as F # Parameterless functions, like (some) activation functions import torchvision.datasets as datasets # Standard datasets import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation from torch import optim # For optimizers like SGD, Adam, etc. from torch import nn # All neural network modules from torch.utils.data import ( DataLoader, ) # Gives easier dataset managment by creating mini batches etc. from tqdm import tqdm # For nice progress bar! # Simple CNN class CNN(nn.Module): def __init__(self, in_channels=1, num_classes=10): super(CNN, self).__init__() self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=8, kernel_size=3, stride=1, padding=1, ) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d( in_channels=8, out_channels=16, kernel_size=3, stride=1, padding=1, ) self.fc1 = nn.Linear(16 * 7 * 7, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.reshape(x.shape[0], -1) #shape[0] is the minibatch size x = self.fc1(x) return x # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters in_channels = 1 num_classes = 10 learning_rate = 3e-4 # karpathy's constant batch_size = 64 num_epochs = 3 # Load Data train_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) test_dataset = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) # Initialize network model = CNN(in_channels=in_channels, num_classes=num_classes).to(device) #we may not give any arguments and #use defaults. # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(tqdm(train_loader)): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # forward scores = model(data) loss = criterion(scores, targets) # backward optimizer.zero_grad() loss.backward() # gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) model.train() return num_correct / num_samples print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}") print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
3. ResNet
import torch import torch.nn as nn class block(nn.Module): def __init__( self, in_channels, intermediate_channels, identity_downsample=None, stride=1 ): #identity downsample is a conv layer super().__init__() #used to change the input size for self.expansion = 4 #residual connections self.conv1 = nn.Conv2d( in_channels, intermediate_channels, kernel_size=1, stride=1, padding=0, bias=False, ) self.bn1 = nn.BatchNorm2d(intermediate_channels) self.conv2 = nn.Conv2d( intermediate_channels, intermediate_channels, kernel_size=3, stride=stride, padding=1, bias=False, ) self.bn2 = nn.BatchNorm2d(intermediate_channels) self.conv3 = nn.Conv2d( intermediate_channels, intermediate_channels * self.expansion, kernel_size=1, stride=1, padding=0, bias=False, ) self.bn3 = nn.BatchNorm2d(intermediate_channels * self.expansion) self.relu = nn.ReLU() self.identity_downsample = identity_downsample self.stride = stride def forward(self, x): identity = x.clone() x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) if self.identity_downsample is not None: identity = self.identity_downsample(identity) #identity downsample is only required when we pass between layers, or when stride != 1. #within the layers, blocks has the same number of input and output channels. x += identity x = self.relu(x) return x class ResNet(nn.Module): def __init__(self, block, layers, image_channels, num_classes): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d( image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Essentially the entire ResNet architecture are in these 4 lines below self.layer1 = self._make_layer( block, layers[0], intermediate_channels=64, stride=1) # of output channels = intermediate channels * 4 self.layer2 = self._make_layer( block, layers[1], intermediate_channels=128, stride=2) self.layer3 = self._make_layer( block, layers[2], intermediate_channels=256, stride=2) self.layer4 = self._make_layer( block, layers[3], intermediate_channels=512, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * 4, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.shape[0], -1) x = self.fc(x) return x def _make_layer(self, block, num_residual_blocks, intermediate_channels, stride): identity_downsample = None layers = [] # Either if we half the input space for ex, 56x56 -> 28x28 (stride=2), or channels changes # we need to adapt the Identity (skip connection) so it will be able to be added # to the layer that's ahead # --- normal code handles the case when intermediate_channels*4 = in_channels and stride = 1. #--------in that case, the residual connection is formed automatically. if stride != 1 or self.in_channels != intermediate_channels * 4: identity_downsample = nn.Sequential( #nn.sequential appends nn.conv2d and nn.batchnorm2d nn.Conv2d( self.in_channels, intermediate_channels * 4, #output size is always intermediate_size*4 kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(intermediate_channels * 4), ) layers.append( block(self.in_channels, intermediate_channels, identity_downsample, stride) ) # The expansion size is always 4 for ResNet 50,101,152 self.in_channels = intermediate_channels * 4 # For example for first resnet layer: 256 will be mapped to 64 as intermediate layer, # then finally back to 256. Hence no identity downsample is needed, since stride = 1, # and also same amount of channels. for i in range(num_residual_blocks - 1): layers.append(block(self.in_channels, intermediate_channels)) return nn.Sequential(*layers) def ResNet50(img_channel=3, num_classes=1000): return ResNet(block, [3, 4, 6, 3], img_channel, num_classes) def ResNet101(img_channel=3, num_classes=1000): return ResNet(block, [3, 4, 23, 3], img_channel, num_classes) def ResNet152(img_channel=3, num_classes=1000): return ResNet(block, [3, 8, 36, 3], img_channel, num_classes) def test(): BATCH_SIZE = 4 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = ResNet101(img_channel=3, num_classes=1000).to(device) y = net(torch.randn(BATCH_SIZE, 3, 224, 224)).to(device) assert y.size() == torch.Size([BATCH_SIZE, 1000]) print(y.size()) if __name__ == "__main__": test()
4. GPT (adapted from Karpathy’s code)
# chatgpt is a probabilistic system. It can give many different answers to the same prompt. # 124M parameter GPT2 performance (ie validation loss curve) is replicated by nanogpt when trained on the openwebtext dataset. # tinyshakespare is used for training. import torch import torch.nn as nn from torch.nn import functional as F # hyperparameters batch_size = 64 # how many independent sequences will we process in parallel? block_size = 256 # what is the maximum context length for predictions? max_iters = 5000 eval_interval = 500 learning_rate = 3e-4 device = 'cuda' if torch.cuda.is_available() else 'cpu' eval_iters = 200 n_embd = 384 n_head = 6F n_layer = 6 dropout = 0.2 # ------------ torch.manual_seed(1337) !wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt with open('input.txt', 'r', encoding='utf-8') as f: text = f.read() # here are all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) #65 characters in total, including space. ################################################ ### strategy to tokenize the input text ######## ################################################ ### when people say "tokenize" they mean converting the raw text as a string to some sequence of integers acc. to some vocabulary. #as our tokens are characters, tokenization means converting characters into integers. @9:45 #different or better tokenizers possible. subword tokenizers are frequently used. #as the codebook gets smaller, the tokenized string gets larger. # create a mapping from characters to integers stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string ########################################################### ### Tokenize tinyshakespare and Train and test splits ##### ########################################################### data = torch.tensor(encode(text), dtype=torch.long) #tokenize tinyshakespare. n = int(0.9*len(data)) # divide data into training set and validation set to detect overfitting. train_data = data[:n] # first 90% will be train, rest val @13:50 val_data = data[n:] ########################################################## ######### get a single batch of data ##################### ########################################################## # transformer is trained to predict a character from a string of any length, up to block size. @17:45 def get_batch(split): # generate a small batch of data of inputs x and targets y data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) # generates "batch size" number of random samples x = torch.stack([data[i:i+block_size] for i in ix]) # sample block_size token batch_size times y = torch.stack([data[i+1:i+block_size+1] for i in ix]) # we will try to predict y[i] from x[:i+1] x, y = x.to(device), y.to(device) return x, y # x and y are BxT where B=batch size, T=block size ######################################################## ###### for noiseless estimation of training ############ ######################################################## @torch.no_grad() # context manager def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) # eval_iters = 200 for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out #################################################################### ######### A single head ############################################ ######## n_embd => head_size ####################################### #################################################################### class Head(nn.Module): """ one head of self-attention """ def __init__(self, head_size): # creates key, query and value linear layers. super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) ##??????? ## block_size=256 self.dropout = nn.Dropout(dropout) def forward(self, x): # input of size (batch, time-step, n_embd) # output of size (batch, time-step, head_size) B,T,C = x.shape # C is head_size. k = self.key(x) # (B,T,n_embd) -> (B,T,head_size) q = self.query(x) # (B,T,n_embd) -> (B,T,head_size) # compute attention scores ("affinities") wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, head size) @ (B, head_size, T) -> (B, T, T) wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) wei = F.softmax(wei, dim=-1) # (B, T, T) wei = self.dropout(wei) # perform the weighted aggregation of the values v = self.value(x) # (B,T,head size) out = wei @ v # (B, T, T) @ (B, T, head_size) -> (B, T, head_size) return out ####################################################################################### ######### multi head attention ######################################################## ######### num_head single heads work in parallel ###################################### ######### each take the same n_embd dimensional input ################################# ######### each generate a separate head_size dimensional output ####################### ######### these outputs are concatenated and passed through a linear layer ############ ###############to form a single n_embd dimensional output ############################# ####################################################################################### class MultiHeadAttention(nn.Module): """ multiple heads of self-attention in parallel """ def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) #everything in nn.modulelist must be a sbclass of nn.module #Unlike nn.sequential, does not define a forward pass. You need to #explicitly iterate through its modules self.proj = nn.Linear(head_size * num_heads, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) # all heads work with the same input, x. # output of all heads are concatenated. # concatenate over channel dimension. out = self.dropout(self.proj(out)) # pass it through a nn return out ############################################################################# ############# neural network after multi-head the attention layer ########### ############# note that this is per token. ################################## ######## bütün token'lar aynı neural netten geçiyorlar ###################### ############################################################################# class FeedFoward(nn.Module): """ a simple linear layer followed by a non-linearity """ def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) ################################################################################### ####### a single block, formed by an multi-head attention layer, and a neural ##### ####### network following it: B x T x n_embd => B x T x n_embd ################### ################################################################################### class Block(nn.Module): """ Transformer block: communication followed by computation """ def __init__(self, n_embd, n_head): # n_embd: embedding dimension, n_head: the number of heads we'd like super().__init__() head_size = n_embd // n_head //if n_embd=32 and n_head=4, key, query and value will be 8 dimensional each. //each head will get the same n_embd dim input but it will generate head_size dim output. //when these outputs are concatenated we will be back to n_embd. self.sa = MultiHeadAttention(n_head, head_size) # self-attention is between tokens.. self.ffwd = FeedFoward(n_embd) # feedforward is per-token self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) //first layer norm, then self attention. talking between tokens. x = x + self.ffwd(self.ln2(x)) //then layer norm, then 2-layer neural net. per token. return x ################################################################################## ####### multiple blocks (nulti-head attn - neural net) one afrer another ######### ################################################################################## class GPTLanguageModel(nn.Module): def __init__(self): super().__init__() ########## go from characters to embeddings ############################## # In the bigram model, for each one of the 64 tokens (or character), we had an 64-dim vector indicating the # probabilities (or logits) of any other character to follow that character. This formed an # 64x64 lookup table. # Now, for each one of the 64 token, we have an 32-dim embedding encoding the same information. self.token_embedding_table = nn.Embedding(vocab_size, n_embd) # nn.Embedding expects integer indices that represent # the categories or tokens in the vocabulary. # categorical data => continuous vectors. ######### position embeddings are also learned ############################ self.position_embedding_table = nn.Embedding(block_size, n_embd) ######### create multi-head attention unit ################################# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) # n_layer blocks, one after another self.ln_f = nn.LayerNorm(n_embd) ## final layer normalization ######### go from embeddings to logits of the following character ############# # goes from token embeddings to logits. In bigram model we didnt have this intermediate embedding layer. self.lm_head = nn.Linear(n_embd, vocab_size) # better init, not covered in the original GPT video, but important, will cover in followup video self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) ######## pas through the whole encoder ################################## def forward(self, idx, targets=None): B, T = idx.shape ##### idx and targets are both (B,T) tensor of integers tok_emb = self.token_embedding_table(idx) # (B,T)->(B,T,C=n_embd) which gives the token embeddings of the following char. pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C=n_embd) x = tok_emb + pos_emb # (B,T,C=n_embd) x = self.blocks(x) # (B,T,C) feeds data info into multi-attention head x = self.ln_f(x) # (B,T,C) logits = self.lm_head(x) # (B,T,vocab_size) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss #generates new speech # if idx is BxT then this routine will extend idx as BxT -> Bx(T+1) -> .... -> B x (T + max_new_tokens) def generate(self, idx, max_new_tokens): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # crop idx to the last block_size tokens idx_cond = idx[:, -block_size:] # if idx is larger than block_size, crop it to block_size. # get the predictions logits, loss = self(idx_cond) # note: logits is BxTxC # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # do the softmax on the last dimension. # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx model = GPTLanguageModel() m = model.to(device) # print the number of parameters in the model print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters') # create a PyTorch optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) for iter in range(max_iters): # every once in a while evaluate the loss on train and val sets if iter % eval_interval == 0 or iter == max_iters - 1: losses = estimate_loss() print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") # sample a batch of data xb, yb = get_batch('train') # evaluate the loss logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() # generate from the model context = torch.zeros((1, 1), dtype=torch.long, device=device) print(decode(m.generate(context, max_new_tokens=500)[0].tolist())) #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist())) string of I==> head1() ==> n_embd/k size vector==> I characters ( vocab_size) ==> nn.embedding() ==>n_embd size vectors ==>I ... I ==> concat() == I==> headk() ==> n_embd/k size vector==> I ==> n_embd size vector ==> neural network ==> n_embd size vector ==>