Skip to content

Discrete signals

Before going on with deicrete signals, let us remember what continuous signals are: Continuous signals are defined on real numbers \(\mathbb{R}\). Notationally they are denoted by  small case letters and indexed by curly braces and with a dependent variable $t$, like $x(t)$, $y(t)$. As \(t \in \mathbb{R}\), \(x(2.7)\), \(y(\sqrt{3})\), \(x(\pi)\) are well-defined.

Discrete signals are defined on integers $\mathbb{Z}$. Notationally they are they are denoted by  capital letters and indexed by angle braces and with a dependent variable $n$, like $X[n]$, $Y[n]$ etc. As $n \in \mathbb{Z}$, $X[2]$, $Y[-4]$, $X[0]$ are well-defined. But $X[2.7]$, $U[\sqrt{3}]$, $W[\pi]$ are undefined and using such expressions indicates a mistake.

Discrete exponential signals

Exponential discrete signals are defined as follows.

$$\begin{eqnarray}
X[n] = Ae^ {\alpha n}, n \in \mathbb{I}
\end{eqnarray}$$

The python code which will print this discrete signal for $\alpha = -0.1$ is given below.

import matplotlib.pyplot as plt
import numpy as np
n = np.arange(0,0.20,1); 
X = np.exp(-0.1*n);

plt.stem(X)
plt.xlabel('n')
plt.ylabel('X[n]')

plt.show()

And, this is the resulting plot:

Discrete sinusoid signals

Exponential sinusoids are defined as

$$\begin{eqnarray}
X[n] = A \sin( {\Omega n + \Omega_0}),
\end{eqnarray}$$

where $n \in \mathbb{I}$ and  $\Omega, \omega_0 \in \mathbb{R}$.

A plot for $\Omega = \frac {2\pi}{10}$, $\Omega_0 = 0$ is given below:

Discrete dirac deltas (Kronecker Deltas)

A kronecker delta is the analogue of a dirac delta in discrete domain.

$$\begin{eqnarray}
\delta[n]=
\begin{cases}
&1, \qquad \mathrm{n=0}\\
&0, \qquad \mathrm{otherwise}
\end{cases}
\end{eqnarray}$$

 

import matplotlib.pyplot as plt 
import numpy as np 
n = np.arange(-10,10,1); 
X = (n==0); 
plt.stem(X) 
plt.xlabel('n') 
plt.ylabel('X[n]') 
plt.show()

 

 

Discrete unit step

A discrete unit step is described as

$$\begin{eqnarray}
U[n]=
\begin{cases}
&0, \qquad n<0 \\
&1, \qquad 0 \leq n
\end{cases}
\end{eqnarray}$$

Discrete indicator function

A discrete indicator step can be described as

$$\begin{eqnarray}
\chi_{[a,b]}[n]=
\begin{cases}
&1, \qquad a \leq n \leq b \\
& 0, \qquad \mathrm{otherwise}
\end{cases}
\end{eqnarray}$$