Skip to content

Reptile: The Assembler

Structure of the assembly code

Assembly code for our processor is composed of .code and .data sections. .code section will contain the variable declarations. These variables will be the operands for LDI instructions. A general declaration for a variable is:

count: 60

which means that you have a variable named count with initial value 60. The variables (except array variables) always occupy 16-bit space. All variables must start with a letter.

There are also array declarations:

my_array: .space 10

arrays are declared with the keyword .space. In the above example, we must reserve 10 consecutive 16-bit locations for the variable my_array.

.code section contains the instructions. The first instruction must always be mapped to the address 0x000 in memory. All labels of jump and jz instructions must be strings.

An example program in assembly code and its machine code translation

Assembly for

.data 
           count: 60 
           array: .space 10 
           char: 0xfe 
.code 
           ldi 0 count 
           ld  0 0 
           ldi 1 array 
           ldi 2 char           
           ld  2 2 
lpp        st 1 2 
           inc 1 
           dec 0     
           jz loop 
           jmp lpp 
loop       sub 1 2 3 
lp1        jmp lp1

 

The machine code of the above assembly program is listed below.

000        1000         ldi 0 count
001        000f 
002        2000         ld  0 0
003        1001         ldi 1 array 
004        0010 
005        1002         ldi 2 char
006        001b 
007        2012         ld  2 2 
008        3088        st 1 2 
009        7609         inc 1 
00a        7700         dec 0
00b        4001         jz loop 
00c        5ffb         jmp lpp 
00d        71d1         sub 1 2 3 
00e        5fff         jmp lp1
00f        003c            Variable count, with initial value 60, or 0x3c
010        0000            Ten empty locations of the variable array
011        0000 
012        0000 
013        0000 
014        0000 
015        0000 
016        0000 
017        0000 
018        0000 
019        0000 
01a        0000 
01b        00fe           The variable char

 

Source code for a simple assembler

// to compile, gcc assembler.c -o assembler
// No error check is provided.
// Variable names cannot start with numeric characters, ie, with 0-9.
// hexadecimals are twos complement.
// first address of the code section is zero, and the data section follows the code section in memory.
// four tables are formed: jump table, ldi table, label table and variable table.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>


//Converts a hexadecimal string to integer.
int hex2int( char* hex)  
{
    int result=0;

    while ((*hex)!='\0')
    {
        if (('0'<=(*hex))&&((*hex)<='9'))
            result = result*16 + (*hex) -'0';
        else if (('a'<=(*hex))&&((*hex)<='f'))
            result = result*16 + (*hex) -'a'+10;
        else if (('A'<=(*hex))&&((*hex)<='F'))
            result = result*16 + (*hex) -'A'+10; 
        hex++;
    }
    return(result);
}


main()
{     
    FILE *fp;
    char line[100];
    char *token = NULL;
    char *op1, *op2, *op3, *label;
    char ch;
    int  chch;

    int program[1000];
    int counter=0;  //holds the address of the machine code instruction


    struct label_or_variable  
    {
        int location;
        char *name;
    };

// A label is a symbol which mark a location within the code section. In the example 
// program above, the strings "lpp", "loop" and "lp1" are labels. 
// In reptile, labels are used by jump, jz and ldi instructions.  
    struct label_or_variable labeltable[50]; //there can be 50 labels at most in our programs
    int nooflabels = 0;                       //number of labels encountered during assembly.

 // A variable is a symbol which mark a location within the data section. In the example 
// program above, the strings "", "" and "" are variables.
// In reptile, variables are used by ldi instructions.
    struct label_or_variable variabletable[50]; // The list of variables in .data section and their locations.
    int noofvariables = 0;    //number of jumps encountered during assembly. 

// Jump instructions cannot be assembled readily because we may not know the value of 
// the label when we encountered a jump instruction. This happens if the label used by
// that jump instruction appear below that jump instruction. This is the situation 
// with the label "loop" in the example program above. Hence, the location of jump 
// instructions must be stored.
    struct label_or_variable jumptable[100]; //There can be at most 100 jumps
    int noofjumps=0;                        //number of jump instructions encountered during assembly.    


//Variables and labels are used by ldi instructions.
//The memory for the variables are traditionally allocated at the end of the code section.
//Hence their addresses are not known when we assemble a ldi instruction. Also, the value of 
//a label may not be known when we encounter a ldi instruction which uses that label.
//Hence, the location of the ldi instructions must be kept, and these instructions must be 
//modified when we discover the address of the label or variable that it uses.
    struct label_or_variable lditable[100];
    int noofldis=0;



    fp = fopen("name_of_program","r");

    if (fp != NULL)
    {
        while(fgets(line,sizeof line,fp)!= NULL)  //skip till .code section
        {
            token=strtok(line,"\n\t\r ");
            if (strcmp(token,".code")==0 )
                break;
        } 
        while(fgets(line,sizeof line,fp)!= NULL)
        {
            token=strtok(line,"\n\t\r ");  //get the instruction mnemonic or label

//========================================   FIRST PASS  ======================================================
            while (token)
            {
                if (strcmp(token,"ldi")==0)        //---------------LDI INSTRUCTION--------------------
                {
                    op1 = strtok(NULL,"\n\t\r ");                                //get the 1st operand of ldi, which is the register that ldi loads
                    op2 = strtok(NULL,"\n\t\r ");                                //get the 2nd operand of ldi, which is the data that is to be loaded
                    program[counter]=0x1000+hex2int(op1);                        //generate the first 16-bit of the ldi instruction
                    counter++;                                                   //move to the second 16-bit of the ldi instruction
                    if ((op2[0]=='0')&&(op2[1]=='x'))                            //if the 2nd operand is twos complement hexadecimal
                        program[counter]=hex2int(op2+2)&0xffff;              //convert it to integer and form the second 16-bit 
                    else if ((  (op2[0])=='-') || ((op2[0]>='0')&&(op2[0]<='9')))       //if the 2nd operand is decimal 
                        program[counter]=atoi(op2)&0xffff;                         //convert it to integer and form the second 16-bit 
                    else                                                           //if the second operand is not decimal or hexadecimal, it is a laber or a variable.
                    {                                                               //in this case, the 2nd 16-bits of the ldi instruction cannot be generated.
                        lditable[noofldis].location = counter;                 //record the location of this 2nd 16-bit  
                        op1=(char*)malloc(sizeof(op2));                         //and the name of the label/variable that it must contain
                        strcpy(op1,op2);                                        //in the lditable array.
                        lditable[noofldis].name = op1;
                        noofldis++;                                             
                    }        
                    counter++;                                                     //skip to the next memory location 
                }                                       

                else if (strcmp(token,"ld")==0)      //------------LD INSTRUCTION---------------------         
                {
                    op1 = strtok(NULL,"\n\t\r ");                //get the 1st operand of ld, which is the destination register
                    op2 = strtok(NULL,"\n\t\r ");                //get the 2nd operand of ld, which is the source register
                    ch = (op1[0]-48)| ((op2[0]-48) << 3);        //form bits 11-0 of machine code. 48 is ASCII value of '0'
                    program[counter]=0x2000+((ch)&0x00ff);       //form the instruction and write it to memory
                    counter++;                                   //skip to the next empty location in memory
                }
                else if (strcmp(token,"st")==0) //-------------ST INSTRUCTION--------------------
                {
                    //to be added
                }
                else if (strcmp(token,"jz")==0) //------------- CONDITIONAL JUMP ------------------
                {
                    //to be added
                }
                else if (strcmp(token,"jmp")==0)  //-------------- JUMP -----------------------------
                {
                    op1 = strtok(NULL,"\n\t\r ");            //read the label string
                    jumptable[noofjumps].location = counter;    //write the jz instruction's location into the jumptable 
                    op2=(char*)malloc(sizeof(op1));         //allocate space for the label                  
                    strcpy(op2,op1);                //copy the label into the allocated space
                    jumptable[noofjumps].name=op2;            //point to the label from the jumptable
                    noofjumps++;                    //skip to the next empty location in jumptable
                    program[counter]=0x5000;            //write the incomplete instruction (just opcode) to memory
                    counter++;                    //skip to the next empty location in memory.
                }                
                else if (strcmp(token,"add")==0) //----------------- ADD -------------------------------
                {
                    op1 = strtok(NULL,"\n\t\r ");    
                    op2 = strtok(NULL,"\n\t\r ");
                    op3 = strtok(NULL,"\n\t\r ");
                    chch = (op1[0]-48)| ((op2[0]-48)<<3)|((op3[0]-48)<<6);  
                    program[counter]=0x7000+((chch)&0x00ff); 
                    counter++; 
                }
                else if (strcmp(token,"sub")==0)
                {
                    //to be added
                }
                else if (strcmp(token,"and")==0)
                {
                    //to be added
                }
                else if (strcmp(token,"or")==0)
                {
                    //to be added
                }
                else if (strcmp(token,"xor")==0)
                {
                    //to be added
                }                        
                else if (strcmp(token,"not")==0)
                {
                    op1 = strtok(NULL,"\n\t\r ");
                    op2 = strtok(NULL,"\n\t\r ");
                    ch = (op1[0]-48)| ((op2[0]-48)<<3);
                    program[counter]=0x7500+((ch)&0x00ff);  
                    counter++;
                }
                else if (strcmp(token,"mov")==0)
                {
                    //to be added
                }
                else if (strcmp(token,"inc")==0)
                {
                    op1 = strtok(NULL,"\n\t\r ");
                    ch = (op1[0]-48)| ((op1[0]-48)<<3);
                    program[counter]=0x7700+((ch)&0x00ff);  
                    counter++;
                }
                else if (strcmp(token,"dec")==0)
                {
                                      //to be added
                }
                else //------WHAT IS ENCOUNTERED IS NOT AN INSTRUCTION BUT A LABEL. UPDATE THE LABEL TABLE--------
                {
                    labeltable[nooflabels].location = counter;  //read the label and update labeltable.
                    op1=(char*)malloc(sizeof(token));
                    strcpy(op1,token);
                    labeltable[nooflabels].name=op1;
                    nooflabels++;
                } 
                token = strtok(NULL,",\n\t\r ");  // if what is read before is an instruction, this will be NULL
                                                  //if what is read before is an label, this will be an opcode.
            }
        }


//================================= SECOND PASS ==============================

//supply the address fields of the jump and jz instructions by matching jumptable and labeltable
        int i,j;         
        for (i=0; i<noofjumps;i++)   //for all jump/jz instructions encountered
        {
            j=0;
            while ((j<nooflabels)&&( strcmp(jumptable[i].name , labeltable[j].name ) != 0 ))  //if the label for this jump/jz does not match with the 
                j++;                                            // jth label in the labeltable, check the next label..
            program[jumptable[i].location] +=(labeltable[j].location-jumptable[i].location-1)&0x0fff;       //copy the jump address into memory.
        }                                                     


//search for the start of the .data segment
        rewind(fp);  
        while(fgets(line,sizeof line,fp)!= NULL)  //skip till .data, if no .data, also ok.
        {
            token=strtok(line,"\n\t\r ");
            if (strcmp(token,".data")==0 )
                break;

        }

// process the .data segment and generate the variabletable[] array.
        int dataarea=0;
         while(fgets(line,sizeof line,fp)!= NULL)
        {
            token=strtok(line,"\n\t\r ");
            if (strcmp(token,".code")==0 )  //go till the .code segment
                break;
            else if (token[strlen(token)-1]==':')
            {                
                token[strlen(token)-1]='\0';  //will not cause memory leak, as we do not do malloc
                variabletable[noofvariables].location=counter+dataarea;
                op1=(char*)malloc(sizeof(token));
                strcpy(op1,token);
                variabletable[noofvariables].name=op1;
                token = strtok(NULL,",\n\t\r ");
                if (token==NULL)
                    program[counter+dataarea]=0;
                else if (strcmp(token, ".space")==0)
                {
                    token=strtok(NULL,"\n\t\r ");
                    dataarea+=atoi(token);
                }
                else if((token[0]=='0')&&(token[1]=='x')) 
                    program[counter+dataarea]=hex2int(token+2)&0xffff; 
                else if ((  (token[0])=='-') || ('0'<=(token[0])&&(token[0]<='9'))  )
                    program[counter+dataarea]=atoi(token)&0xffff;  
                noofvariables++;
                dataarea++;
            }
        }


// supply the address fields for the ldi instructions from the variable table
        for( i=0; i<noofldis;i++)
        {
            j=0;
            while ((j<noofvariables)&&( strcmp( lditable[i].name , variabletable[j].name)!=0 ))
                j++;
            if (j<noofvariables)
                program[lditable[i].location] = variabletable[j].location;                
        } 


// supply the address fields for the ldi instructions from the label table
        for( i=0; i<noofldis;i++)
        {
            j=0;
            while ((j<nooflabels)&&( strcmp( lditable[i].name , labeltable[j].name)!=0 ))
                j++;
            if (j<nooflabels){
                program[lditable[i].location] = (labeltable[j].location)&0x0fff;
                printf("%d %d %d\n", i, j, (labeltable[j].location));    
            }            
        } 


//display the resulting tables
        printf("LABEL TABLE\n");
        for (i=0;i<nooflabels;i++)
            printf("%d %s\n", labeltable[i].location, labeltable[i].name);    
        printf("\n");
        printf("JUMP TABLE\n");
        for (i=0;i<noofjumps;i++)
            printf("%d %s\n", jumptable[i].location, jumptable[i].name);    
        printf("\n");
        printf("VARIABLE TABLE\n");
        for (i=0;i<noofvariables;i++)
            printf("%d %s\n", variabletable[i].location, variabletable[i].name);    
        printf("\n");
        printf("LDI INSTRUCTIONS\n");
        for (i=0;i<noofldis;i++)
            printf("%d %s\n", lditable[i].location, lditable[i].name);    
        printf("\n");
        fclose(fp);
        fp = fopen("RAM","w");
        fprintf(fp,"v2.0 raw\n");
        for (i=0;i<counter+dataarea;i++)
            fprintf(fp,"%04x\n",program[i]);
    }    
}