0) Lecture Notes *
1) Modify GCC to compile to our processor’s assembly
2) Extend LCC compiler to mammal. Use flex and Bison (or awk) to simplify the design. ** :https://stackoverflow.com/questions/15665828/how-to-make-semantic-check-using-flex-bison
3) Read Atari source code. Convert it to C. Adapt it to our system. ***
4) Activating SDRAM on DE0-nano board. Add the necessary wait states to our processor.
5) Design a USB interface
6) Design a Sprite graphics system and associated graphics chips..
7) Reading Risc-V / RocketChip source code.
8) Using what is learned from (6) to design for cache+paging+privileges.
9) Run two programs which have the same address space to see if paging works.
10) Adapt linux 0.11 to our system.
11) Design a GUI.
12) If possible, write also a LLVM compiler
<!doctype html> <html> <body> <canvas width = "500" height = "300" id = "my_Canvas"></canvas> <script> /* Step1: Prepare the canvas and get WebGL context */ var canvas = document.getElementById('my_Canvas'); var gl = canvas.getContext('experimental-webgl'); /* Step2: Define the geometry and store it in buffer objects */ var vertices = [-0.5, 0.5, -0.5, -0.5, 0.0, -0.5,]; // Create a new buffer object var vertex_buffer = gl.createBuffer(); // Bind an empty array buffer to it //WebGL lets us manipulate many WebGL resources on global bind points. You can think of bind points as //internal global variables inside WebGL. First you bind a resource to a bind point. Then, all other functions //refer to the resource through the bind point. So, let's bind the position buffer. gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer); // Pass the vertices data to the buffer gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW); // Unbind the buffer gl.bindBuffer(gl.ARRAY_BUFFER, null); /* Step3: Create and compile Shader programs */ // Vertex shader source code var vertCode = 'attribute vec2 coordinates;' + 'void main(void) {' + ' gl_Position = vec4(coordinates,0.0, 1.0);' + '}'; //Create a vertex shader object var vertShader = gl.createShader(gl.VERTEX_SHADER); //Attach vertex shader source code gl.shaderSource(vertShader, vertCode); //Compile the vertex shader gl.compileShader(vertShader); //Fragment shader source code var fragCode = 'void main(void) {' + 'gl_FragColor = vec4(0.0, 0.0, 0.0, 0.1);' + '}'; // Create fragment shader object var fragShader = gl.createShader(gl.FRAGMENT_SHADER); // Attach fragment shader source code gl.shaderSource(fragShader, fragCode); // Compile the fragment shader gl.compileShader(fragShader); // Create a shader program object to store combined shader program var shaderProgram = gl.createProgram(); // Attach a vertex shader gl.attachShader(shaderProgram, vertShader); // Attach a fragment shader gl.attachShader(shaderProgram, fragShader); // Link both programs gl.linkProgram(shaderProgram); // Use the combined shader program object -- send to gpu gl.useProgram(shaderProgram); /* Step 4: Associate the shader programs to buffer objects */ //Bind vertex buffer object gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer); //Get the attribute location var coord = gl.getAttribLocation(shaderProgram, "coordinates"); //point an attribute to the currently bound VBO gl.vertexAttribPointer(coord, 2, gl.FLOAT, false, 0, 0); //Enable the attribute gl.enableVertexAttribArray(coord); /* Step5: Drawing the required object (triangle) */ // Clear the canvas gl.clearColor(0.5, 0.5, 0.5, 0.9); // Enable the depth test gl.enable(gl.DEPTH_TEST); // Clear the color buffer bit gl.clear(gl.COLOR_BUFFER_BIT); // Set the view port gl.viewport(0,0,canvas.width,canvas.height); // Draw the triangle gl.drawArrays(gl.TRIANGLES, 0, 3); </script> </body> </html>
import torch from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split class CustomDataset: def __init__(self, data, targets): self.data=data self.targets=targets def __len__(self): return len(self.data) def __getitem__(self, idx): current_sample = self.data[idx,:] current_target = self.targets[idx] return{ "x": torch.tensor(current_sample, dtype=torch.float), "y": torch.tensor(current_target, dtype=torch.long) } data, targets = make_classification(n_samples = 1000) train_data, test_data, train_targets, test_targets = train_test_split(data, targets, stratify=targets) # stratify keeps no of pve and nve samples same. #train_data.shape train_dataset = CustomDataset(train_data, train_targets) test_dataset = CustomDataset(test_data, test_targets) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=4, num_workers=2 ) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, num_workers=2 ) #for data in test_loader: # print(data) # break model = lambda x, w, b: torch.matmul(x,w) + b W = torch.randn(20,1,requires_grad=True) b = torch.randn(1,requires_grad=True) learning_rate = 0.001 for epoch in range(10): epoch_loss = 0 for data in train_loader: xtrain = data["x"] ytrain = data["y"] output = model(xtrain,W,b) loss = torch.mean((ytrain.view(-1)-output.view(-1))**2) epoch_loss = epoch_loss + loss.item() loss.backward() with torch.no_grad(): W = W - learning_rate*W.grad b = b - learning_rate*b.grad W.requires_grad_(True) b.requires_grad_(True) print(epoch, epoch_loss) outputs =[] labels=[] with torch.no_grad(): for data in test_loader xtest = data["x"] ytest = data["y"] output = model(xtest,W,b) labels.append(ytest) outputs.append(output) (torch.cat(labels).view(-1) , torch.cat(outputs).view(-1) )
""" A simple walkthrough of how to code a fully connected neural network using the PyTorch library. For demonstration we train it on the very common MNIST dataset of handwritten digits. In this code we go through how to create the network as well as initialize a loss function, optimizer, check accuracy and more. Programmed by Aladdin Persson * 2020-04-08: Initial coding * 2021-03-24: Added more detailed comments also removed part of check_accuracy which would only work specifically on MNIST. * 2022-09-23: Updated with more detailed comments, docstrings to functions, and checked code still functions as intended. """ # Imports import torch import torchvision # torch package for vision related things import torch.nn.functional as F # Parameterless functions, like (some) activation functions import torchvision.datasets as datasets # Standard datasets import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation from torch import optim # For optimizers like SGD, Adam, etc. from torch import nn # All neural network modules from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc. from tqdm import tqdm # For nice progress bar! # Here we create our simple neural network. For more details here we are subclassing and # inheriting from nn.Module, this is the most general way to create your networks and # allows for more flexibility. I encourage you to also check out nn.Sequential which # would be easier to use in this scenario but I wanted to show you something that # "always" works and is a general approach. class NN(nn.Module): def __init__(self, input_size, num_classes): """ Here we define the layers of the network. We create two fully connected layers Parameters: input_size: the size of the input, in this case 784 (28x28) num_classes: the number of classes we want to predict, in this case 10 (0-9) Returns: None """ super(NN, self).__init__() # Our first linear layer take input_size, in this case 784 nodes to 50 # and our second linear layer takes 50 to the num_classes we have, in # this case 10. self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): """ x here is the mnist images and we run it through fc1, fc2 that we created above. we also add a ReLU activation function in between and for that (since it has no parameters) I recommend using nn.functional (F) Parameters: x: mnist images Returns: out: the output of the network """ x = F.relu(self.fc1(x)) x = self.fc2(x) return x # Set device cuda for GPU if it's available otherwise run on the CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 3 # Load Data train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) # Initialize network model = NN(input_size=input_size, num_classes=num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(tqdm(train_loader)): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # Get to correct shape data = data.reshape(data.shape[0], -1) # Forward scores = model(data) loss = criterion(scores, targets) # Backward optimizer.zero_grad() loss.backward() # Gradient descent or adam step optimizer.step() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): """ Check accuracy of our trained model given a loader and a model Parameters: loader: torch.utils.data.DataLoader A loader for the dataset you want to check accuracy on model: nn.Module The model you want to check accuracy on Returns: acc: float The accuracy of the model on the dataset given by the loader """ num_correct = 0 num_samples = 0 model.eval() # We don't need to keep track of gradients here so we wrap it in torch.no_grad() with torch.no_grad(): # Loop through the data for x, y in loader: # Move data to device x = x.to(device=device) y = y.to(device=device) # Get to correct shape x = x.reshape(x.shape[0], -1) # Forward pass scores = model(x) _, predictions = scores.max(1) # Check how many we got correct num_correct += (predictions == y).sum() # Keep track of number of samples num_samples += predictions.size(0) model.train() return num_correct/num_samples # Check accuracy on training & test to see how good our model print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}") print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")